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A numerical scheme based on the pseudospectral method has been implemented in 
order to study three-dimensional convection in a fluid-saturated cube of porous 
material. With increasing Rayleigh number R, convection first evolves from a 
symmetric steady state (S) to a partially non-symmetric steady state (S,  physical 
symmetry in the vertical direction is preserved). The transition Rayleigh number is 
about 550. At a Rayleigh number of 575 the flow becomes oscillatory P(l) with a 
single frequency that increases with R. A t  a value of R between 650 and 680 the 
oscillation becomes quasi-periodic with at least two fundamental frequencies. It 
returns to a simply periodic state in a narrow range about R = 725. A further 
increase of R transforms the simply periodic state again to a quasi-periodic state. The 
sequence of three-dimensional time-dependent states resembles previously studied 
two-dimensional cases in that evolution from more complex states to less complex 
states occurs with increasing R. The partial symmetry breaking prior to the onset of 
time dependence is unique to the three-dimensional flows, but a dependence of the 
S+S' transition on the step size in R suggests the possibility that S+S' might not 
occur prior to S+P"' for sufficiently small steps in R. The quasi-periodic flows 
sometimes exhibit intermittency, causing difficulty in exactly defining their spectral 
characteristics. 

1. Introduction 
Strictly three-dimensional convection in a cube of fluid-saturated porous material 

occurs when the Rayleigh number R exceeds 4 . 5 ~ '  (Beck 1972). Hereafter we shall 
refer to this three-dimensional convection as (1, 1 , 1) ; it involves coupled disturbances 
in all three orthogonal directions. (Steen 1983 has shown that (1,1,1) convection is 
unstable in the range 4 . 5 ~ '  < R < 4.87x2.) The stable (1,1,1) conveckion is 
fundamentally different from three-dimensional convection formed by the super- 
position of two horizontal orthogonal rolls (Zebib & Kassoy 1978). One of the earliest 
attempts to investigate the nonlinear regime in a cube was made by Holst & Aziz 
(1972) who carried out numerical computations for R = 60 and 120. Horne (1979) has 
also obtained solutions up to R = 400 by using finite differences. Straus & Schubert 
(1979) used the Galerkin technique to study steady convection in a cube for R up to 
150, and later extended the calculations for Rayleigh numbers up to 500 (Schubert 
& Straus 1979). Both Schubert & Straus (1979) and Horne (1979) found that the 
flows are oscillatory at sufficiently high Rayleigh number (R > 300). 
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Fluctuating porous-medium thermal convection was first discovered by Home & 
O'Sullivan (1974) for a unicellular mode in two dimensions; the existence of this 
fluctuating state was confirmed by Caltagirone (1975) and Schubert & Straus (1979). 
Other workers also reported the presence of time dependence in porous-medium 
thermal convection (Gary & Kassoy 1981 ; Gary et al. 1982). However, the critical 
Rayleigh number reported by the various investigators for the onset of oscillation in 
a square cell has varied. For example, the critical value determined by Horne & 
O'Sullivan (1974) was R = 280, while Caltagirone (1975) found R = 384f5. The 
definitive value of this critical Rayleigh number has been established only recently 
as R = 390 by Kimura, Schubert & Straus (1987) and Aidun & Steen (1986, 1987). 

Characterization of post-critical behaviour of two-dimensional convection was first 
studied by Schubert & Straus (1982) with the Galerkin method. They reported that 
the time-dependent solution evolves from a simply periodic statc (P(l)) to a quasi- 
periodic state (QP,) with two independent frequencies. A further increase of the 
Rayleigh number transforms the QP, state to another simply periodic state (P(*)). 
The work has been extended by Kimura, Schubert & Straus (1986, 1987), who have 
employed a pseudospectral method (Orszag 1971 ; Gottlieb & Orszag 1977). In their 
computations non-symmetric spectral coefficients, which were neglected in the work 
of Schubert & Straus (1982), were included and much higher truncation numbers 
(N < 56) were used. Kimura et al. (1986, 1987), identified the route to chaotic 
convection for the two-dimensional square-cell mode as 

S + P(I) + QPF) + P(,) + QPF) + P(3) + NP, 

where S and N P  denote steady and non-periodic states, respectively. The transition 
from P(3) to NP takes place at a Rayleigh number somewhere between 850 and 1000. 
The calculations have been performed up to R = 1200. 

The sequence of transitions leading to the NP state is similar to that observed in 
Hele-Shaw convection (Koster & Muller 1984). It is, however, different from 
experimental observations ,with Newtonian fluids (Gollub & Benson 1980) in which 
the bifurcations have been found to always take place towards more complex time- 
dependent flows. In  the course of numerical computations Kimura et al. (1986) as 
well as Schubert & Straus (1982) demonstrated that the time-dependent solutions are 
very sensitive to truncation of the spectral representation : over-truncation often 
leads to spurious transitions (Marcus 1981). Great care is particularly needed in order 
to characterize time-dependent solutions. 

The present work is an extension of the work of Schubert & Straus (1982) and 
Kimura et al. (1986) and aims at characterization of time-dependent solutions in a 
three-dimensional space (a cube). As already mentioned, studies of three-dimensional 
thermal convection in porous media have been very limited. Probably the first 
calculations finding fluctuating convection in three dimensions were made in- 
dependently by Schubert & Straus (1979) and Home (1979). By invoking certain 
symmetry conditions for realizable flows (symmetry about two diagonals a t  each 
horizontal cross-section and antisymmetry with respect to the midheight horizontal 
plane and a 90" rotation about [ = 7 = 0.5; see figure l ) ,  Schubert & Straus (1979) 
found that convection in a cube evolves from steady to simply periodic a t  R = 330, 
and a t  R = 400 it transitions to more complex fluctuations. On the other hand, 
Horne (1979), who used a finite-difference scheme on a 17 x 17 x 17 mesh, found that 
the symmetry conditions about diagonals on each horizontal cross-section were 
already violated for steady-state solutions a t  R = 300. His results are intriguing, 
because it implies that the symmetry conditions hypothesized by Schubert & Straus 
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(1979) may not be guaranteed a t  arbitrarily high Rayleigh numbers. Although neither 
investigation reported the nature of the time-dependent solutions in detail, the 
results showed that, in general, the frequencies and the amplitudes in the Nusselt- 
number variations tend to increase with the Rayleigh number. 

For the present study we have generalized the algorithms of our previous work 
(Kimura et al. 1986) to apply to three dimensions. We shall not impose any a priori 
symmetry conditions on the solutions. In the next section we briefly describe the 
mathematical formulation and the numerical procedure. We then present numerical 
results for the evolution with R (up to R = 740) of three-dimensional thermal 
convection in a cube of fluid-saturated porous material. 

2. Mathematical formulation and numerical procedure 
The mathematical formulation in the present study is identical to that in Straus 

& Schubert (1979) and Schubert & Straus (1979). Therefore, only a brief description 
will be provided in this section. We assume the validity of Darcy's law, the 
Boussinesq approximation and thermal equilibrium between the fluid and the porous 
matrix. The vanishing of vertical vorticity under these assumptions allows the 
introduction of a potential 4 whose second derivatives yield the Darcy velocity 

where u, v and w are the non-dimensional Darcy velocity components in the non- 
dimensional 6-, q- and c-coordinate directions, respectively, as shown in figure 1. It 
is then possible to derive a single governing equation for qb: 

where 7 is dimensionless time. The non-dimensional temperature 8 is related to q5 
according to 

1 
6 = --Vz$. R (3) 

Aforementioned non-dimensional quantities are defined by 

T- T,  - AT( 1 - c) 
AT 

e =  

where asterisks in the velocity components denote dimensional quantities, d is the 
height of the cube, k is the effective thermal conductivity, x is the volume-averaged 
thermal capacity of the porous matrix and the saturated fluid, p is the fluid density, 
c is the specific heat of the fluid, is the top surface temperature and T,  +AT is the 
temperature of the bottom surface. The Rayleigh number is defined as 

agpaKATd R =  
Clk 

e FLM 207 

( 5 )  
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FIQURE 1. Schematic diagram of saturated, porous cube heated from below and the coordinate 
system. The vertical positions of horizontal cuts are shown by a-f. Numerical values of 5 cor- 
responding to a-f vary depending on the truncation number N and they are tabulated in table 1. 

where a is the thermal expansion coefficient of the fluid, p is the fluid viscosity, g is 
the gravitational acceleration and K is the permeability of the porous matrix. 

The boundary conditions on q5 are 

1 &+#?? = $55 = 0 on 5 = 031, 

= Vzq5s = 0 on [ = 0,1,  

q5 ?C =V2q5?= on ~ = 0 , 1 .  

Physically, (6) states that the sidewalls are thermally insulating, the horizontal 
surfaces are isothermal, and all walls are impermeable. 

Following Straus & Schubert (1979), the Galerkin representation for q5, which 
satisfies all the boundary conditions term by term, is 

m c n m  

$(7 ,6 ,7 ,5 )  = C C Z @njm(7) sin (n@) cos ($5) cos (mnv). (7) 
n-11-Om-0 

Substitution of (7) into (2) and use of the orthogonality relations among the 
trigonometric functions yields an infinite set of coupled, nonlinear, first-order 
ordinary differential equations for the @%,=(7). These equations are truncated 
diagonally, such that the sum of n, j and m does not exceed a specified positive 
integer N ,  the truncation number. 

Characterization of the time-dependent solution is made by monitoring the 
Nusselt number defined by 

where q is the horizontally averaged heat flux. The Nusselt number is a suitable 
parameter for testing the accuracy of the numerical results. It has been found by 
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Straus & Schubert (1979) that three-dimensional flows require more terms to achieve 
a given accuracy than does two-dimensional convection. For example they reported 
that for 100 < R < 150, N = 10 is mcessary for Nu to be accurate to within 1 %, while 
Straus (1974) found that N = 6 was adequate to give Nu to the same accuracy for 
two-dimensional flows with R as large as 150. 

The set of coupled nonlinear equations for @,,,m are solved numerically by the 
pseudospectral method (Orszag 1971 ; Gottlieb & Orszag 1977). The basic idea of the 
method is to evaluate the nonlinear products in physical space by transforming each 
factor of a nonlinear term from spectral space to physical space with the fast Fourier 
transform (FFT). The evaluated nonlinear products are then decomposed into 
spectral components by the inverse FFT. Since the number of spectral coefficients for 
a given truncation number N is proportional to N 3  in three-dimensional convection, 
overall computation time for the nonlinear products in spectral space would be 
proportional to N 6 .  On the other hand, the number of manipulations needed for 
nonlinear products in physical space is merely proportional to N .  This implies a 
significant reduction in the amount of computing time, particularly for large 
truncation numbers. 

Considerable care is required with the FFT to reduce aliasing errors. The diagonal 
truncation (i.e. n + j + m  < AJ) prevents simultaneous aliasing from more than one 
spatial direction. Comparisons of pseudospectral and Galerkin solutions indicate that 
diagonal truncation significantly reduces aliasing effects on both time-averaged and 
time-dependent quantities. We further reduced the effects of aliasing by adding zeros 
to the truncated set of spectral coefficients before taking the inverse FFT. The results 
of this procedure will be discussed in the following section. 

In  a series of three-dimensional computations based on the Galerkin method, 
Straus & Schubert (1979) and Schubert & Straus (1979) enforced various symmetry 
conditions on the spectral coefficients (viz. that the sum of any pair of n, m a n d j  be 
even). This enforces symmetry about horizontal diagonals and antisymmetry with 
respect to a reflection about the midplane 6 = 0.5 and a rotation of 90" about the line 
6 = 7 = 0.5; it reduces the a priori non-zero spectral coefficients from 220 to 55 for 
N =  10, for example. In the calculations presented here, we have relaxed these 
symmetry restrictions, and have included the complete set of spectral coefficients in 
the numerical computations (as long as they satisfy the diagonal truncation). This 
enables us to study the more general properties of convection in a cube. 

In figure 2 we show the computational speed measured on the IBM3090 as a 
function of N .  The ordinate indicates actual CPU time (8) required to yield spectral 
coefficients at a new time GSjm(7+A7) from the previous values @,,,(T). At low 
truncation numbers the speeds of both methods are comparable, while the 
pseudospectral code is faster than the Galerkin code if the truncation number 
exceeds N = 8. Since the computation time for the pseudo-spectral code and the 
Galerkin code increase as Nj and P respectively, the former is significantly more 
efficient than the latter a t  large truncation numbers. For example, a t  N = 100 the 
present code would be approximately 1000 times faster than the Galerkin code. In 
the range of typical truncation numbers employed in the present study, the 
pseudospectral code runs roughly 100 times faster than the Galerkin code. The 
calculations reported here were partly carried out on the CRAY-XMP using single 
precision; however most of the computations were done on the IBM3081K with 
double precision ; both computers use 14 significant figures. 
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FIGURE 2. Respective computing speeds of the Galerkin code (0) and the pseudospectral code (0, 
0 )  on an IBM3090 as a function of truncation number N. The computing speed of the 
pseudospectral method is dependent on the FFT subroutine called within the code: use of the FFT 
in the ESSL subroutine package (0) makes the code about twice as fast as that of the FIT in the 
IMSL package (0). The plotted CPU time is the actual computing time required to advance a 
specified AT. 

3. Discussion of results 
3.1. Symmetric steady-state convection : S 

We started our numerical computations by setting a large value for the spectral 
coefficient @lll. For Rayleigh numbers 80,120 and 150 we confirmed that the present 
code generates identical results to  those reported in Straus & Schubert (1979). The 
computations were continued to  larger values of the Rayleigh number with 
truncation numbers N as large as 26. We found that the symmetries assumed by 
Straus & Schubert (1979) were valid up to R = 500. Representative isotherms and 
flow patterns in horizontal planes are shown in figure 3 for R = 250. The vertical 
positions of the planes (u-f) are illustrated in figure 1 and given in table 1. Contours 
of constant 9 in figure 3(a)  indicate deviations of the temperature from the 
conductive state. Hot spots a t  diagonally facing corners gradually expand as the 
fluid ascends, and at g = 0.5 the ascending hot region occupies half of the cross- 
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FIGURE 3(a) .  For caption see page 161. 
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FIGURE 3(b) .  For caption see facing page. 
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FIQURE 3. (a) Isotherms of 8, (b) the contours of w, and (c )  the contours of q+ a t  each horizontal 
cut at R = 250 (N = 20). 8 is the measure of deviation from the conduction profile. The interval of 
the isotherms is 0.05. Hot isotherms are shown solid and cold ones are dotted. The contour interval 
of w is 8. Upward flows are shown solid and downward ones are dotted. The contour intervals of 
#a are 0.5 for b-e and 1 for a and f. The flows are perpendicular to the contour lines. Solid lines show 
positive values and dotted lines show negative values. 
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Location N = 20 N = 26 N = 30 N = 34 

a 0.043 0.037 0.032 0.029 
b 0.238 0.260 0.290 0.230 
C 0.476 0.480 0.484 0.486 
d 0.524 0.520 0.516 0.514 
e 0.762 0.740 0.710 0.770 
f 0.952 0.963 0.968 0.971 

TABLE 1 .  Vertical position of horizontal cross-sections (a-f) for various truncation numbers 

section; the rest of i t  is filled with the descending cold fluid. As the hot material 
ascends beyond y = 0.5, the hot area continues to expand and fills most of the cross- 
section, except for the pair of diagonally opposing corners where cold descending 
fluid is found. Figure 3 ( b )  shows the vertical velocities in the same horizontal planes. 
A strong correlation between figures 3 ( a )  and 3(b )  is apparent: hot and cold zones 
correspond to upward and downward flows, respectively. Figure 3(c)  shows the 
horizontal velocity potential &; the horizontal velocities are perpendicular to the 
contours. Figure 4(a-c) shows isotherms and flow patterns at R = 450. Though this 
flow is similar to  the one a t  R = 250, convection at  the higher Rayleigh number is 
much more vigorous. For example, in figure 4(a ,  b) ,  the diagonal upward flow is 
distinctive and much stronger than the downward flow. The symmetries about the 
two diagonals in each horizontal plane and the antisymmetries with respect to the 
reflection plane a t  g = 0.5 characterize the flow fields in figures 3 and 4. The spectral 
coefficients that would make non-symmetric contributions to these flow fluids remain 
on the order of the round-off error and show no tendency to grow during the 
computations. 

3.2. Steady-state convection with partial symmetry breaking : S‘ 
As the Rayleigh number is increased from R = 500 to R = 550 the solutions begin to 
lose the symmetry about the two diagonals in each horizontal plane. Figure 5 (a-c) 
shows the loss of this symmetry in both temperature and flow fields a t  R = 550. In  
these steady-state flows, the rising and sinking motion near the lower and upper walls 
shifts slightly to off-diagonal positions. However, the convection pattern a t  R = 550 
still exhibits antisymmetry with respect to 5 = 0 and a 90’ rotation about the axis 
6 = 7 = 0.5. (The corresponding conditions on the indices of the spectral coefficients 
are that either n+m or n + j  is even.) We confirmed the partial symmetry breaking 
with truncation numbers N = 26 and 30 and refer to this solution as S’. The 
S‘ solution closely resembles Horne’s (1979) finite-difference solution a t  R = 300. 
Partial symmetry breaking a t  R = 300 in Horne’s solution may be due to the 
relatively coarse grid (17 x 17 x 17) he employed. 

as a function of R in figure 6. (Olol is a fundamental spectral coefficient of flows which 
are not symmetric about diagonals in horizontal planes.) The figure shows the 
coexistence of the two branches in the range between R = 475 and R = 540 as a 
consequence of hysteresis. With increasing R, the S + S’ transition takes place 
between R = 540 and 545. With decreasing R,  the S‘ state persists for R as low as 475. 
The value of R at which S changes to S’, or vice versa, depends on the rate a t  which 
R is increased or decreased. When R was increased in one step from 500 to 540, we 
found that @lol/O1ll was about 0.3 a t  R = 540, already large enough to characterize 

To further characterize the existence of S and S’, we show the ratio of QlOl to 
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FIQURE 4(a).  For caption see page 165. 

d 

e 

C f 

163 



164 S. Kimura, G .  Schubert and J .  M .  Straue 

a d 

b e 

C f 

FIGURE 4(b) .  For caption see facing page. 
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FIGURE 4. (a)  isotherms of 8, (b)  contours of w, and (c) contours of q5c at each horizontal cut when 
R = 450 and N = 20. The intervals of 8 and w are 0.05 and 8 respectively. The contours of q5c are 
1 for b-e and 2 for a and f. 
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FIGURE 5(a ) .  For caption see page 168. 
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FIQURE 5 ( b ) .  For caption see page 168. 
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FIGURE 5. (a) isotherms of 8,  ( b )  contours of w, and (c) contours of & at each horizontal cut at 
R = 550 (N = 26). The contour intervals of 0 and w are 0.05 and 10. The contour intervals of $c are 
1 for b t ?  and 2 for a and f. 
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FIGURE 6. Loglo(@lol/@~l~) aa a function of increasing R ( 0 )  or decreasing It(.). 

I 

the flow as S'. However, upon increasing R in two steps (500+530+540), the flow 
at R = 540 effectively retained the symmetries about the horizontal diagonals ; the 
ratio 4jlol/4jll1 was about 0.01. By decreasing the Rayleigh-number step size it is 
probable that we would increase the value of R for the S -+ S' transition (or vice versa 
for S'-+S). As indicated by the gradual growth of the ratio @lol/@lll when R is 
greater than 530, however, it appears that the transition S + S' is inevitable. The S' 
state transfers slightly less heat than does the S-state ; for example, a 0.3 % difference 
in heat transfer is observed at R = 500. The dependence of the S -+ S' transition on 
the Rayleigh number step size raises the possibility that this transition might not 
occur before S+P(') for sufficiently small steps in R. 

3.3. Simply periodic state : P(l) 

At R = 575 the solution is oscillatory. The temporal behaviour of the Nusselt number 
during the early part of the computations is shown in figure 7. After large overshoots 
and undershoots, Nu(T) first appears to approach a steady state, but it soon starts to 
oscillate with small but steadily growing amplitude. It is found that the system 
evolves to a simply periodic state P(l) after a sufficiently long time integration, 
typically 0.7-1.0 in non-dimensional time. We confirmed the transition from S' to 
P(I) with N =  26 and 30. Our best estimate for the transition Rayleigh number is 
somewhere between 550 and 575. Figure 8 shows a representative Nusselt-number 
oscillation with time about the mean value at  R = 625. The spectral power plot has 
peaks only at  a single frequency fl and its harmonics. 

Since the characteristics of time-dependent states are sensitive to aliasing and the 
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FIGURE 7. Onset of simply periodic oscillatory convection at R = 575 (N = 26). This time 
integration was initiated using the final solution at R = 550 as the initial condition. 
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FIGURE 8. (a) The time series Nu(7)-% and ( b )  its power spectrum in & simply periodic flow at 
R = 625 (N  = 26). 
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Oscillation 
Number of Average Nuzelt frequencyof Frequency Variance of 
added zeros number, Nu Nu(r)-Nu resolution Nu(7)-% 

2 7.48688 176.6 3.9 1.359 x 
7 7.48747 176.6 3.9 1.349 x 

11  7.48747 176.6 3.9 1.349 x 

number of time steps = 3400. The number of added zeros is varied. 
TABLE 2. Test on aliasing effects. R = 580, N = 26 with diagonal truncation AT = 0.7494 x 

Frequency of 
Average Nusselt largest spectra, Frequency Varianceof 

Time step number, peak of NU(T)-NU resolution Nu(7)-Nu 

0.7494 x lo-& 7.48747 176.6 3.9 1.349 x 
0.3747 x 7.48679 172.7 3.9 1.322 x lo-' 

TABLE 3. Tests on the accuracy of the time integration. The conditions are the same as those with 
seven added zeros in table 2, except the time step, which is halved in the second case. 

integration time step, we have carried out a number of tests on the accuracy of our 
numerical results. First, we varied the number of added zero-value coefficients and 
performed three computations with other parameters fixed (R = 580, N = 26, 
A7 = 7.494 x Table 2 shows the resulting time-averaged Nusselt number Nu, 
oscillation frequency and Nu variance. All of these quantities agree to a t  least three 
significant figures. The effectiveness of adding only a small number of zero-valued 
coefficients in reducing aliasing is probably due to the use of diagonal truncation. In  
the present study, we have always added 5 to 7 zeros in order to ensure effectively 
alias-free results. 

Next we performed the same calculation (R = 580, N = 26 and seven zeros added) 
using two different time steps. A second-order Runge-Kutta technique was used in 
the time integration of the spectral coefficients. Results for two different time steps 
are shown in Table 3. The time-averaged Nusselt numbers agree to three significant 
figures. The variance and the oscillation frequency of Nu(7) differ by 2%. The 
frequency peak shifts to the nearest lower value when the time-step is halved. 
However, in these cases, both f = 176.6 and f = 172.7 are strong spectral peaks of 
almost equal magnitude. The true frequency probably lies somewhere between the 
two. This comparison indicates that the time integration is accurate enough in 
determining both time-averaged and oscillatory characteristics. 

The sampling interval for analysing the oscillatory characteristics of Nu(7) is equal 
to the time step used in the time integration. Since the time integration is performed 
explicitly, the time step is restricted by the Courant number, which decreases with 
increasing truncation number. Sampling intervals used in the spectral analysis for 
three different truncation numbers are shown in table 4. The frequency resolution, 
or the lowest frequency contained in the spectral analysis, on the other hand, is 
determined by the length of the time integration. Normally the lengths of the 
integrations were 0.2-0.3 in non-dimensional time. Therefore, typical frequency 
resolutions are from 3-5, corresponding to 1-2 YO of the frequency peak in a simply 
periodic state. Frequency resolutions for several cases are shown in table 5. 

Representative contours for 8 ,  w and &- in each horizontal plane are shown in 
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Truncation number, N Sampling interval 

26 0.7494 x lo-* 
30 0.5629 x 
34 0.4384 x lo-* 

TABLE 4. Sampling intervals for analysing the spectral content ofNu(7) -%. These are equal to the 
time steps used in computations with the indicated truncation numbers. 

Figure Rayleigh Frequencies of largest Frequency 
number number spectral peaks resolution 

13(a) 680 [fa 142.1 8.9 

13(b) 680 [ f, 126.9 5.1 

8 640 f, 204.4 4.4 
f, 97.7 

fl 284.2 
f, 96.4 

f, 248.1 
f, 136.9 

fl 302.3 
14 740 [ fi 165.4 5.7 

TABLE 5. Frequency resolutions of representative computations 

figure 9(a-c). The contours of these quantities in the planes at b, c, d and e show 
almost identical features to those in the S' state. Within the top and bottom 
boundary layers, however, ripple-like disturbances in the 3- and w-fields are evident ; 
these indicate that boundary-layer instability may be the cause of the oscillation in 
the Nusselt number. Despite the ripple-like patterns within the 8 boundary layer, 
horizontal flows are surprisingly smooth and do not show any irregularity. Figure 
10 (a ,  b )  shows the contours of w in the horizontal planes a and f a t  six equally spaced 
times within a single oscillation period. The ripple-like disturbances gradually move 
towards the band-like ascending or descending flows near diagonals, and they are 
eventually engulfed by the main flows ; ripples are generated repeatedly. The 
maximum of the vertical velocity in the top and bottom boundary layers varies by 
approximately 15% of the average value during the period; vertical velocity 
assumes its maximum value shortly after the ripples are engulfed. Antisymmetry 
about 5 = 0.5 with a 90" rotation about 6 = T,I = 0.5 can be seen by comparing equally 
numbered plates in figures 10(a) and lO(b) .  

The system remains in the P(l) state until another time-dependent state replaces 
it a t  a higher Rayleigh number. The characteristics of the P(l) state are summarized 
in figures 11 and 12. Figure 11 shows the fundamental oscillation frequency as a 
function of R. The non-dimensional frequency at onset of time dependence (R = 575) 
is 175+3. The frequency increases with R according to f cc R2.'. The variance also 
increases by an order of magnitude as R increases from 580 to 640. At R = 640, near 
the end of the P(l) Rayleigh number interval, the frequency exhibits an abrupt 
increase to f = 250, which is higher by 40 than the value predicted by extension of 
the trend from lower values of R. The frequency of 250 a t  R = 640 has been confirmed 
with three different truncation numbers, N = 26, 30 and 34. Kimura et al. (1987) 
showed the presence of a quasi-periodic state in a narrow range between R = 625 and 
R = 64Q. 
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FIGURE 9(a ) .  For caption see page 175. 
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FIGURE 9 ( b ) .  For caption see facing page. 
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FIGURE 9. (a) isotherms of 8, ( b )  the contours of w, and (c) the contours of q+ at each horizontal cut 
during a simply periodic oscillatory convection at R = 625 (N  = 26). The contour intervals of 0, w 
and are the same as those in figure 5. 
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FIGURE lO(a). For caption see facing page. 
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FIQURE 10. Contours of w in horizontal cuts at vertical positions a and f when R = 625 and N = 
26. The contour interval is 10. Plates (i)-(vi) show flows at six consecutive times during a single 
period, where AT = 8.24 x W4. (a) the horizontal cut at the vertical position f. Anti-symmetry with 
respect to f: = 0.5 and a 90' rotation about 5 = 7 = 0.5 are seen at equally numbered plates. (b) The 
horizontal cut at the vertical position a. 
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FIQURE 11. Dimensionless frequenciesf of the peaks in the spectral power ofNu(7) -NT as function 
of R.  0, N = 26; 0 ,  N = 30; 0, N = 34. Dotted circles indicate the peaks observed in a different 
oscillatory regime at the same Rayleigh number. 

3.4. Quasi-periodic state: QP, or QP, 
When the Rayleigh number is increased further above R = 650 with N = 26 or N = 
30, the system evolves to a somewhat complex time-dependent state characterized 
by two or three incommensurate frequencies. We have found characterization of the 
quasi-periodic state in a cube to be a much more difficult task than its two- 
dimensional counterpart. We accumulated the Nu(7) data up to 7 = 0.7-1.0 in non- 
dimensional time before determining properties of the time-dependent convection. 
However Nu(7) is not always characterized by a unique oscillatory state for a given 
Rayleigh number (at a fixed truncation number) as described in our earlier work on 
two-dimensional flows (Schubert & Straus 1982; Kimura et al. 1986). A quasi- 
periodic state sometimes consists of two or more distinctive states, each of which lasts 
for 7 = 0 . 2 4 . 3 ,  has spectral peaks a t  different frequencies, and has different values 
of variance and average Nusselt number. An example for R = 680 and N = 30 is 
shown in figure 13(a,b). Figure 13 (a )  shows Nu(7)  and its spectrum during an early 
stage ; 7 = 0 corresponds to approximately 0.2 non-dimensional time units after time 
integration was initiated. Spectral peaks occur a t  f, = 98+5, f, = 142+5 and fi = 

284 + 5. The variance is about 0.0074. These are indicated by dashed circles in figures 
11 and 12. Further time integration transforms Nu(7) to that in figure 13(b),  where 
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the amplitude of oscillation is greater and its basic frequencies are f3 = 96f3 ,  f2 = 
127+3 and fi = 249f3. 

It has been observed that the transition described above often occurs when the 
time-integration is interrupted and continued at  the same values of R and N .  The 
continuing-integration process involves a switch of time-integration scheme from the 
second order Runge-Kutta to the first-order Euler scheme at the very first time- 
integration step. It is conceivable that the transition may be caused by errors 
introduced during the restarting process, although there has not been any evidence 
of this in two-dimensional calculations. Quasi-periodic three-dimensional convection 
may therefore be very sensitive to introduced disturbances. We observed similar 
transitions at R = 650 with N = 26 and R = 725 with N = 30. The spectral 
characteristics and the variances corresponding to different regimes are marked with 
dashed circles in figures 11 and 12. Although variances change from one regime to 
another without identifiable trends, the spectral contents vary in a somewhat 
consistent way. High-frequency peaks are found on the simply periodic trend f oc R2.' 
extended beyond R = 640. The high-frequency peaks occur near f = 100, 130 and 
170. The frequencies of each of these peaks increase with R.  

With N = 26 and 30, the quasi-periodic states revert with increasing R to another 
simply periodic state with a drastic reduction in variance. A similar decrease in 
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FIGURE 14. The time series of Nu(7) -% and its power spectrum at R = 740 (N = 34). 

variance has been observed when the system develops from a quasi-periodic state to 
a simply periodic state in two-dimensional flows (Schubert & Straus 1982). We 
confirmed this transition with a higher truncation number N = 34. 

The increase of R from 725 to 740 transforms the system again to a quasi-periodic 
state. Figure 14 shows Nu(T) and its spectral content a t  R = 740. Temperature and 
flow fields are shown in figure 15 (u-c). Several new features are seen in these figures. 
Disturbances originating from the thermal boundary layers penetrate more deeply 
into the core flow than was the case at R = 625. They are identified by hot rising or 
cold descending spots in the horizontal midplanes (plates b-e). The horizontal flows 
within the top and bottom boundary layers are no longer smooth, as evidenced by 
distorted isopotential lines q$ (in plates a and b in figure 15). Figure 16 shows a series 
of contour diagrams of w a t  successive times. Comparison with figure 10(a, b)  shows 
that disturbances within the boundary layers are of smaller scales, probably due to 
thinner thermal boundary layers. Despite this complex vertical-flow structure within 
the thermal boundary layers, the antisymmetry about 5 = 0.5 and a 90' rotation 
about .$ = q = 0.5 are still present a t  R = 740 (see plates a and f i n  figure 1661, the 
highest Rayleigh number in the present study. 
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FIGURE 15(a). For caption see page 184. 
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FIGURE 15(b) .  For caption see page 184. 
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FIGURE 15. Contours of (a) 8, ( b )  w, and (c) q5c at each horizontal cut at R = 740 ( N =  34). The 
intervals of 8 and w are 0.05 and 10 respectively; the intervals of q5c are 1 for b-e and 2 for a and f. 
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FIGURE 16. Contours of w in the horizontal cut at the vertical position of f when R = 740 and 
N = 30. The interval of the contours is 10. Plates (i)-(vi) show flows at six consecutive times; the 
time interval is 0.0017. 
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FIGURE 17. Nusselt number as a function of R .  Time-averaged values are plotted in oscillatory 
convection. A, data generated with N = 20, and other symbols are all defined in figures 1 1  and 12. 

There have been two suggestions for the mechanism of oscillation. One is the 
gravitional instability of thermal boundary layers, which is often attributed to 
Howard (1964). The other involves advection of periodically pinched-off thermal 
blobs along the top and bottom walls (Moore & Weiss 1973). The present numerical 
calculations support the mechanism proposed by Howard, since no isolated thermals 
were detected in the contour diagrams (plates b+ in figure 9a and figure 15a). The 
observation is consistent with our earlier work on two-dimensional single-cell 
convection and with recent work of Steen & Aidun (1988). 

3.5. Time-averaged Nusselt number 
The Nu-R relation for R up to 500 reported by Schubert & Straus (1979) was based 
on solutions obtained with relatively low truncation numbers and symmetry 
restrictions. We summarize the heat transport results obtained by the present 
numerical simulations in figure 17. For R = 200, 250 and 300 our results agree well 
with those reported by Schubert & Straus (1979). For example, a t  R = 200 they give 
Nu = 5.104 with N = 12, while our computation yields Nu = 5.144 with N = 20. In the 
range 200 < R < 575 (the critical Rayleigh number for the onset of oscillation) % K 

Ro.44 is a good fit to the numerically generated data. Within the Rayleigh-number 
range of the P(l) states, the slope of the Nu-R relation becomes much steeper than the 
trend in the steady-state regime. However, once the QPcl) state sets in, because of 
intermittency, the time-averaged Nusselt number varies often by 10 YO, depending 
on respective oscillatory states. The data in figure 17 corresponding to different 
oscillatory states are shown with dashed circles. Despite these relatively scattered 
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data, the Nu-R power-law relation in the QP state is consistent with the one in the 
P(l) state, and the trend is in good agreement with Nu cc R1.2, significantly steeper 
than the steady-state trend. The Nusselt number of three-dimensional convection in 
a cube exceeds that of two-dimensional convection in a square by 10-20% for the 
Rayleigh-number range studied here (200 < R -= 740). 
4. Concluding remarks 

We have carried out numerical calculations to determine the evolution with R of 
the (1,1,1) mode of convection in a cubical enclosure filled with a saturated porous 
medium. We used an efficient numerical code based on the pseudospectral method. 
No symmetry restrictions were imposed a priori on the spectral coefficients. This 
enabled us to study the general properties of three-dimensional convection. We 
found both similarities and differences between the two-dimensional mode (1,0,1) 
and the fully three-dimensional mode. The presence of oscillatory convection a t  
sufficiently high Rayleigh numbers, the appearance of a simply periodic regime a t  
the onset of oscillation, and the occurrence of a transition from more complex to less 
complex flows are common features of two- and three-dimensional convection. On 
the other hand, there are quantitative differences between two- and three- 
dimensional convection and a number of characteristics are unique to the three- 
dimensional ( 1 , 1 , 1 )  convective mode. Both the critical Rayleigh number for the 
onset of oscillation and the onset frequency are higher for the three-dimensional case : 
R = 575 and f = 175 for the (1,1,1) mode, while R = 390 and f = 82.5 for the ( l , O ,  
1 )  mode. Partial symmetry breaking, the S + S' transition, precedes the onset of 
oscillatory convection in three-dimensional flow, though the dependence of this 
transition on the step size in R raises some doubt regarding the validity of this 
conclusion. The quasi-periodic state of three-dimensional convection exhibits 
intermittency , each regime differing in spectral characteristics, variance and average 
Nusselt number, indicating that the flows in the quasi-periodic state are very 
sensitive to outer disturbances. The Nusselt number (the time-averaged Nusselt 
number in time-dependent flows) of the three-dimensional flows is generally greater 
than that of the two-dimensional flows. 

Symmetry in the <-direction (antisymmetry with respect to < = 0.5 and a 90" 
rotation about the axis of E = 7 = 0.5) are still present at R = 740, the highest 
Rayleigh number in the present study. However, the gradual growth of coefficients 
which violate this symmetry was observed, and it is possible that eventual symmetry 
breaking in the [-direction could trigger the transition to chaotic flow a t  a higher 
Rayleigh number, just as in the two-dimensional case. Effects of symmetry 
constraints on the evolution with R of convection are therefore significant, as has 
been also pointed out by McLaughlin & Orszag (1982) and Kessler (1987). The 
truncation number was again found to be a crucial parameter in the quantitative 
identification of the nature of time-dependent convection. We used the high 
truncation numbers N = 20, 26, 30 and 34 to  ensure the validity of the time- 
dependent results. 
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